Role of dust in landscape brightness and color

David K. Lynch
Thule Scientific, P.O. Box 953, Topanga, California 90290, USA (thule@earthlink.net)

Received 6 August 2014; revised 22 September 2014; accepted 9 October 2014; posted 10 October 2014 (Doc. ID 220430); published 7 November 2014

Scattering by microscopic particles renders virtually all dusty surfaces brighter than dust-free surfaces. Examples of surface brightening are demonstrated in the landscape and laboratory and explained theoretically using Mie theory calculations. The implications for landscape photography and remote sensing are discussed. © 2014 Optical Society of America

OCIS codes: (080.0080) Geometric optics; (240.0240) Optics at surfaces; (280.0280) Remote sensing and sensors; (330.1690) Color; (350.4990) Particles.

http://dx.doi.org/10.1364/AO.54.000B41

1. Introduction

Draw your finger across any surface, and it will remove the dust, revealing the underlying surface that is darker (cleaner) than the dusty one (Fig. 1). By dust, we mean any solid particle less than 125 μm in diameter. Examples are very fine sand, silt or clay, windborne soil, pollen, spores, volcanic dust, meteoritic dust, pollution particles, smoke particles, residue from water drops that have evaporated, and fibers from various sources such as spider webs and plant seeds. Household dust is composed of human hair and skin cells, dust mites, pollen, textile, and paper fibers. Dust-producing regions such as deserts cover approximately one-third of the global land area [1], and dust can be carried around the world.

Surface brightening happens because small particles of most any composition scatter light efficiently at visible wavelengths. Absorption by tiny particles is very small because their opacity parameter [23] $2\pi k a / \lambda$ is much less than unity (k is the imaginary part of the complex refractive index, a is particle radius, and λ is the wavelength of light). The brightness of a dusty surface may depend on the observer’s line of sight relative to the Sun because of structure in the bidirectional reflectance distribution function.

Even if the dust is thick enough to hide the underlying surface, an opaque dust layer is often relatively bright unless the particles are highly absorbing. Indeed, think of the most common powders in everyday life: flour, household dust, powdered sugar, baby powder, baking powder and soda, cement, fertilizers, etc. Most of them are white or light colored, few are dark or black.

There is vast literature on light scattering by small particles. Equally large is the literature on dust because of its importance in remote sensing, geology, astronomy, optics, and computer graphic scene generation. In most cases, however, attention has been focused on a thick dust layer, as in the case of lunar soil or planetary regoliths such as sand dunes and comet surfaces. Much less attention has been paid to an optically thin dust layer and its influence on the color and brightness of a surface; for example, bare rock or plant leaves. Scattering by a single particle on a smooth surface has been studied in depth [4–9], but the broader notion of how particles that cover only a small fraction of a surface influence the reflected radiance has not been explicitly addressed to our knowledge.

In this paper, we investigate the brightening of natural surfaces due to light scattering by a small amount of dust. The original impetus for this work came from geological investigations, but the results reported here are applicable to natural surfaces of any kind.

2. Observations

While preparing for field work on the Lavic Lake Fault in California’s Mojave Desert in 2014, the
The author was surprised by how readily visible the fault trace was in overhead imagery (Fig. 2). Upon examining the fault in the field, the reason for its brightness became apparent: dust, or, to be more general, the presence and exposure of microscopically rough surfaces including dust. Examples include soil, minor landslides, scratched rocks, smashed rocks, and broken rock faces, the latter having fractal surfaces on microscopic scales \[10,11\] and thus are able to efficiently scatter light.

Much of the dust originated in the soil under the surface rocks. In desert environments, soil comes in large part from aeolian deposits with a large contribution from clay particles, which tend to be light colored. Obviously, wind can more easily loft and carry smaller particles than it can large ones. Thus desert soils have a high percentage of silt- and clay-size particles, typically \(< 50\ \mu m\). At the fault plane itself, earthquake motion grinds rock into an extremely fine powder called gouge [12].

Several different though related effects involving microscopic surfaces have combined to brighten the fault trace. Minor landslides exposed lighter underlying soil and produced dust. Movement along the Lavic Lake fault during the Hector Mine earthquake did the same. Broken rocks displayed their lighter-colored interiors as well as exposed fractal-like fracture surfaces that efficiently scatter light. Overturned rocks exposed the light, underlying soil, and the now-hidden dark upper surfaces of the rock were hidden, thereby making the ground, on average, appear brighter (Fig. 3). In places where a shutter ridge blocked stream flow, alluvium pounded behind it until the stream cut through the ridge, leaving a small playa of light-colored soil, mostly clay.

3. Laboratory Results

While in the field, the author collected a number of rock samples along the fault; in this case, igneous extrusive cobbles and pebbles. Of particular interest were the darkest rocks such as basalt, a common...
black rock high in Fe and Mg and low in Si. In the laboratory, basalt pebbles were sanded flat on one side, and then tiny pieces were ground into powder (Fig. 4). The roughened surfaces and powders were considerably brighter than the original rock, showing again that small particles of rock are brighter than large particles of it. This is hardly a surprise because geologists have been using the “streak test” to help identify rocks since antiquity. A rock drawn across the surface of an unglazed ceramic tile leaves a streak of finely powdered rock whose color can be indicative of the rock’s composition. The revealing value of a streak can be illustrated in the following example: hand specimens of magnetite and biotite are both black, but their streaks are quite different; black and white, respectively.

Having briefly reviewed the well-known but seldom mentioned fact that powders of almost any material are usually brighter than the bulk samples from which the powder was derived, we now turn to the reasons for this.

4. Mie Calculations

Figure 5 shows Mie calculations using MiePlot [13] of single scattering albedo ω at wavelength $0.5 \mu m$ as a function of particle radius for $\frac{n}{k} = 1.63 + ik$ where k was varied by factors of 10 between 10^{-0} and 10^{-4}. These values were chosen to span the refractive indices of common dust compositions (Table 1). Many small particles such as pollen and rock dust are compositionally heterogeneous. Therefore, a single refractive index is difficult to measure and does not represent the whole particle. The Mie calculations refer to spherical particles, and dust particles are certainly not spherical. However, the physical interpretation is much the same, and the computation demonstrates the general situation for nonspherical particles.

Table 1. Complex Refractive Indices for Common Dust Compositions

<table>
<thead>
<tr>
<th>Dust Composition</th>
<th>Approximate Wavelength (nm)</th>
<th>Real n</th>
<th>Imaginary k</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>500</td>
<td>1.54(o) 1.55(e)</td>
<td>1E – 7</td>
<td>Various</td>
</tr>
<tr>
<td>Calcite</td>
<td>500</td>
<td>1.65(o) 1.49 (e)</td>
<td>—</td>
<td>Various</td>
</tr>
<tr>
<td>NaCl</td>
<td>500</td>
<td>1.54</td>
<td>—</td>
<td>Various</td>
</tr>
<tr>
<td>Illite</td>
<td>500</td>
<td>1.57</td>
<td>0.001</td>
<td>Various, especially [14]</td>
</tr>
<tr>
<td>Montmorillonite</td>
<td>500</td>
<td>1.5</td>
<td>5E – 05</td>
<td>Various, especially [14]</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>500</td>
<td>1.56</td>
<td>0.0001</td>
<td>Various, especially [14]</td>
</tr>
<tr>
<td>Basalt</td>
<td>500</td>
<td>1.63</td>
<td>0.01</td>
<td>[15]</td>
</tr>
<tr>
<td>Limonite</td>
<td>500</td>
<td>2.16</td>
<td>0.13</td>
<td>[15]</td>
</tr>
<tr>
<td>Dolomite</td>
<td>500</td>
<td>1.62</td>
<td>—</td>
<td>Reported in [16]</td>
</tr>
<tr>
<td>Gypsum</td>
<td>500</td>
<td>1.52</td>
<td>3E – 06</td>
<td>[17]</td>
</tr>
<tr>
<td>Hematite</td>
<td>500</td>
<td>3.05</td>
<td>0.3</td>
<td>Reported in [16]</td>
</tr>
<tr>
<td>Urban aerosols</td>
<td>532</td>
<td>1.59</td>
<td>0.044</td>
<td>[18]</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>500</td>
<td>1.59</td>
<td>5E – 04</td>
<td>[19]</td>
</tr>
<tr>
<td>Soot</td>
<td>500</td>
<td>1.5</td>
<td>0.47</td>
<td>Reported in [16]</td>
</tr>
<tr>
<td>Saharan dust</td>
<td>505</td>
<td>1.47 – 1.59</td>
<td>0.01 – 0.0013</td>
<td>[20]</td>
</tr>
<tr>
<td>Saharan dust</td>
<td>500</td>
<td>1.56 – 1.59</td>
<td>3E – 7 – 7E – 7</td>
<td>[16]</td>
</tr>
<tr>
<td>Atmospheric dust</td>
<td>500</td>
<td>2E – 3 – 0.01</td>
<td>—</td>
<td>Reported in [21]</td>
</tr>
</tbody>
</table>

— means $< 1E – 4$
For $k = 10^{-4} \& 10^{-3}$, the albedo increased to near unity as the particle size decreased from 1000 μm to about 0.5 μm. With further decrease in particle size, ω entered the Rayleigh regime and decreased. For $k = 10^{-2}$, the albedo increased, however, with small-scale variations to a maximum of about 0.98 before decreasing as the particle sizes entered the Rayleigh regime. Highly absorbing particles typical of hematite and soot ($k > 10^{-2}$) showed more complex behavior, and, for $k = 10^{-1}$, the particle's albedo decreased monotonically with decreasing particle size. Although relatively few rocks have had their complex refractive indices measured because of natural variations from sample to sample, most have $k < 10^{-2}$, and thus their powders and streaks are relatively bright.

5. Discussion
The amount of light reflected from a dusty surface will depend on the fractional surface coverage and albedo of the dust. The effect is most pronounced for dark surfaces. A bright surface such as limestone or chalk would show little if any brightening. Indeed, light surfaces could darken a bit if the dust tended to absorb light. In most cases, however, brightening will occur because rocks and plants are relatively dark, the albedos of most of the Earth’s land surfaces being about 0.2 in the absence of snow [22]. The “whitening” of surfaces is very much like a fading color. It can be viewed as a color shift in the surface’s International Commission on Illumination (CIE) chromaticity coordinates toward the achromatic point (Fig. 6). Note that highly absorbing (“black”) powders will have similar trajectories in the CIE color space, but instead of brightening the surface, they will darken it.

The presence of dust has not prevented the satellite and airborne communities from retrieving vast amounts of useful spectral data from their imagery. Thus, it seems that dust has been unknowingly accommodated in retrieval algorithms, at least until it becomes thick enough to confuse the retrieval system. The situation is identical to what occurs in any imaging system whose pixel size or resolution does not resolve the surface in sufficient detail to separate different components. The observed spectra are composite of spectra of all the different materials within a resolution element. The approach to “unmixing” the spectra is to add various candidate spectra together in various proportions in an effort to match the observed spectra.

Even macroscopically smooth surfaces are microscopically rough and, thus, can be thought of as having a “dust-like” coating. Microscopic upward (and downward) projections will scatter light differently than will the smooth bulk material. Light scattering is useful in determining surface rugosity [23].

Earthquakes are known to raise vast dust clouds, especially in desert regions [24]. The main reason is that falling rocks (i.e., landslides on every scale) collide with other rocks, and the impacts produce many small particles. Indeed, any violent event such as forest fires, explosions, strong desert winds, volcanic eruptions, or building collapses generate large amounts of dust, and loft it high into the atmosphere where it may be carried great distances before settling to the ground.

6. Summary and Conclusions
We have demonstrated the optical effects that lead to surface brightening by thin dust layers and explained them theoretically using Mie calculations. In general, the smaller the particle, the brighter and whiter it is. Surface brightening is the result of light scattered by dust particles that absorb very little incident light by virtue of being very small or having small imaginary parts of their refractive index ($k < 10^{-2}$), or both.

The author would like to thank Philip Laven for performing the Mie calculations and for making MiePlot freely available to the community. Bill Livingston had many useful comments on an early draft of the paper.

References
24. http://www.youtube.com/watch?v=gPKVlW6lymM